Category Theory and Computer Programming
Editat de David Pitt, Samson Abramsky, Axel Poigne, David Rydehearden Limba Engleză Paperback – oct 1986
Preț: 333.02 lei
Preț vechi: 416.28 lei
-20% Nou
Puncte Express: 500
Preț estimativ în valută:
58.92€ • 68.75$ • 51.51£
58.92€ • 68.75$ • 51.51£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540171621
ISBN-10: 3540171622
Pagini: 532
Ilustrații: X, 522 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.8 kg
Ediția:1986
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540171622
Pagini: 532
Ilustrații: X, 522 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.8 kg
Ediția:1986
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Categories.- Elements of categorical reasoning : Products and coproducts and some other (co-)limits.- Functors and natural transformations.- Adjunctions.- Cartesian closure — Higher types in categories.- Algebra categorically.- Category theory and logic.- Categories, data types, and imperative languages.- Category theory and programming language semantics: An overview.- Weakest preconditions: Categorical insights.- A categorical view of weakest liberal preconditions.- Functor-category semantics of programming languages and logics.- Finite approximation of spaces.- Categories of partial morphisms and the ?P-calculus.- A note on distributive laws and power domains.- Category theory and models for parallel computation.- Categorical models of process cooperation.- Galois connections and computer science applications.- A study in the foundations of programming methodology: Specifications, institutions, charters and parchments.- Bits and pieces of the theory of institutions.- Extended ML: An institution-independent framework for formal program development.- Behavioural program specification.- Key extensions of abstract data types, final algebras, and database semantics.- Theories as categories.- Internal completeness of categories of domains.- Formalising the network and hierarchical data models — an application of categorical Logic.- A categorical unification algorithm.- Computing with categories.