Big Data Analytics in Genomics

Editat de Ka-Chun Wong
Notă GoodReads:
en Limba Engleză Carte Hardback – November 2016
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace.  To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.
This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA.  In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science.  Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.

Citește tot Restrânge
Toate formatele și edițiile
Toate formatele și edițiile Preț Express
Carte Paperback (1) 59475 lei  Economic 5-7 săpt. +22246 lei  10-17 zile
  Springer – 22 Apr 2018 59475 lei  Economic 5-7 săpt. +22246 lei  10-17 zile
Carte Hardback (1) 60764 lei  Economic 5-7 săpt. +6902 lei  1-2 săpt.
  Springer – November 2016 60764 lei  Economic 5-7 săpt. +6902 lei  1-2 săpt.

Preț: 60764 lei

Preț vechi: 65337 lei

Puncte Express: 911

Preț estimativ în valută:
12292 13986$ 10878£

Carte tipărită la comandă

Livrare economică 26 februarie-12 martie
Livrare express 29 ianuarie-05 februarie pentru 7901 lei

Preluare comenzi: 021 569.72.76


ISBN-13: 9783319412788
ISBN-10: 3319412787
Pagini: 490
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.80 kg
Ediția: 1st ed. 2016
Editura: Springer
Colecția Springer
Locul publicării: Cham, Switzerland


Introduction to Statistical Methods for Integrative Analysis of Genomic Data.- Robust Methods for Expression Quantitative Trait Loci Mapping.- Causal Inference and Structure Learning of Genotype-Phenotype Networks using Genetic Variation.- Genomic Applications of the Neyman-Pearson Classification Paradigm.- Improving Re-annotation of Annotated Eukaryotic Genomes.- State-of-the-art in Smith-Waterman Protein Database Search.- A Survey of Computational Methods for Protein Function Prediction.- Genome Wide Mapping of Nucleosome Position and Histone Code Polymorphisms in Yeast.- Perspectives of Machine Learning Techniques in Big Data Mining of Cancer.- Mining Massive Genomic Data for Therapeutic Biomarker Discovery in Cancer: Resources, Tools, and Algorithms.- NGC Analysis of Somatic Mutations in Cancer Genomes.- OncoMiner: A Pipeline for Bioinformatics Analysis of Exonic Sequence Variants in Cancer.- A Bioinformatics Approach for Understanding Genotype-Phenotype Correlation in Breast Cancer.


“This edited volume is intended to showcase the current research on big data analytics for genomics … . The edited volume is well-organized, structured, and topics appeared sequentially. Most of the chapters are self-contained. … this is a good collection of work in one place; I think this volume will attract a broader audience. I enjoyed reading a few chapters of the book and found them interesting and useful.” (Technometrics, Vol. 59 (2), April, 2017)

Notă biografică

Ka-Chun Wong is Assistant Professor in the Department of Computer Science at City University of Hong Kong. He received his B.Eng. in Computer Engineering in 2008 and his M.Phil. degree in the Department of Computer Science and Engineering in 2010, both from United College, the Chinese University of Hong Kong. He finished his PhD at the Department of Computer Science at University of Toronto . His research interests include computational biology, bioinformatics, evolutionary computation, big data analytics, application machine learning, and interdisciplinary research.


Treats both theoretical and practical aspects of scalable data analysis in genome research

Covers various applications in high impact problems, such as cancer genome analytics

Includes concrete cases that illustrate how to develop solid computational pipelines for genomics