Artificial Neural Networks in Pattern Recognition
Editat de Friedhelm Schwenker, Simone Marinaien Limba Engleză Paperback – 29 aug 2006
Preț: 322.01 lei
Preț vechi: 402.51 lei
-20% Nou
Puncte Express: 483
Preț estimativ în valută:
56.98€ • 66.91$ • 50.01£
56.98€ • 66.91$ • 50.01£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540379515
ISBN-10: 3540379517
Pagini: 316
Ilustrații: X, 302 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:2006
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540379517
Pagini: 316
Ilustrații: X, 302 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:2006
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Unsupervised Learning.- Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions.- Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition.- Adaptive Feedback Inhibition Improves Pattern Discrimination Learning.- Semi-supervised Learning.- Supervised Batch Neural Gas.- Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes.- On the Effects of Constraints in Semi-supervised Hierarchical Clustering.- A Study of the Robustness of KNN Classifiers Trained Using Soft Labels.- Supervised Learning.- An Experimental Study on Training Radial Basis Functions by Gradient Descent.- A Local Tangent Space Alignment Based Transductive Classification Algorithm.- Incremental Manifold Learning Via Tangent Space Alignment.- A Convolutional Neural Network Tolerant of Synaptic Faults for Low-Power Analog Hardware.- Ammonium Estimation in a Biological Wastewater Plant Using Feedforward Neural Networks.- Support Vector Learning.- Support Vector Regression Using Mahalanobis Kernels.- Incremental Training of Support Vector Machines Using Truncated Hypercones.- Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques.- Multiple Classifier Systems.- Multiple Classifier Systems for Embedded String Patterns.- Multiple Neural Networks for Facial Feature Localization in Orientation-Free Face Images.- Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory.- Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization.- Visual Object Recognition.- Object Detection and Feature Base Learning with Sparse Convolutional Neural Networks.- Visual Classification of Images by Learning Geometric Appearances Through Boosting.- An Eye Detection System Based on Neural Autoassociators.- Orientation Histograms for Face Recognition.- Data Mining in Bioinformatics.- An Empirical Comparison of Feature Reduction Methods in the Context of Microarray Data Classification.- Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data.- Learning and Feature Selection Using the Set Covering Machine with Data-Dependent Rays on Gene Expression Profiles.