Algorithmic High-Dimensional Robust Statistics
Autor Ilias Diakonikolas, Daniel M Kaneen Limba Engleză Hardback – 7 sep 2023
Preț: 324.28 lei
Preț vechi: 405.35 lei
-20%
Puncte Express: 486
Preț estimativ în valută:
57.43€ • 67.07$ • 49.89£
57.43€ • 67.07$ • 49.89£
Carte disponibilă
Livrare economică 31 ianuarie-14 februarie
Livrare express 17-23 ianuarie pentru 358.62 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781108837811
ISBN-10: 1108837816
Pagini: 300
Dimensiuni: 163 x 235 x 22 mm
Greutate: 0.56 kg
Ediția:Nouă
Editura: Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1108837816
Pagini: 300
Dimensiuni: 163 x 235 x 22 mm
Greutate: 0.56 kg
Ediția:Nouă
Editura: Cambridge University Press
Locul publicării:New York, United States
Cuprins
1. Introduction to robust statistics; 2. Efficient high-dimensional robust mean estimation; 3. Algorithmic refinements in robust mean estimation; 4. Robust covariance estimation; 5. List-decodable learning; 6. Robust estimation via higher moments; 7. Robust supervised learning; 8. Information-computation tradeoffs in high-dimensional robust statistics; A. Mathematical background; References; Index.
Recenzii
'This is a timely book on efficient algorithms for computing robust statistics from noisy data. It presents lucid intuitive descriptions of the algorithms as well as precise statements of results with rigorous proofs - a nice combination indeed. The topic has seen fundamental breakthroughs over the last few years and the authors are among the leading contributors. The reader will get a ringside view of the developments.' Ravi Kannan, Visiting Professor, Indian Institute of Science
Descriere
This book presents general principles and scalable methodologies to deal with adversarial outliers in high-dimensional datasets.