A Course in Regression and Smoothing Methods: Chapman & Hall/CRC Texts in Statistical Science
Autor Zhiqiang Tanen Limba Engleză Hardback – 10 aug 2026
While standard texts often focus on the application of statistical methods from a user's perspective, this book covers the foregoing topics from a developer's perspective, with systematic attention to the mathematical, statistical, and computational ideas and results that underlie the methods. The distinction is analogous to that between a user’s manual and a developer’s manual for software: the goal is not only to demonstrate how to apply the methods, but also how they are derived and implemented.
Assuming a basic knowledge of undergraduate statistics, the book is intended primarily as a graduate textbook for teaching and studying regression and smoothing methods. It serves as a useful resource for students and researchers in Statistics, Data Science, and related fields who wish to move beyond routine application and study modern regression and smoothing methods at a more advanced level.
Key Features:
- Focuses on core, representative topics in regression and smoothing while addressing important methodological issues often omitted at the introductory level.
- Presents regression and smoothing methods in a coherent, interconnected manner that highlights their common structures and relationships.
- Explains and demonstrates numerical algorithms in a self-contained way, with R code that implements the methods directly rather than relying on existing packages.
- Reinforces learning through not only end-of-chapter exercises but also questions and exercises integrated into the main text.
Din seria Chapman & Hall/CRC Texts in Statistical Science
- 20%
Preț: 628.15 lei - 9%
Preț: 739.15 lei - 9%
Preț: 736.03 lei - 8%
Preț: 551.07 lei - 11%
Preț: 686.50 lei - 9%
Preț: 732.90 lei -
Preț: 410.20 lei -
Preț: 435.61 lei - 18%
Preț: 967.51 lei - 15%
Preț: 516.01 lei - 18%
Preț: 895.54 lei - 15%
Preț: 522.45 lei - 18%
Preț: 697.89 lei - 18%
Preț: 706.66 lei -
Preț: 416.13 lei - 9%
Preț: 671.86 lei - 18%
Preț: 671.81 lei - 9%
Preț: 640.24 lei - 18%
Preț: 1217.47 lei - 15%
Preț: 496.98 lei - 18%
Preț: 722.74 lei -
Preț: 411.39 lei -
Preț: 467.72 lei - 18%
Preț: 898.42 lei - 8%
Preț: 597.00 lei - 15%
Preț: 652.65 lei - 9%
Preț: 659.82 lei - 15%
Preț: 513.50 lei - 18%
Preț: 896.61 lei - 18%
Preț: 695.17 lei - 15%
Preț: 502.04 lei - 5%
Preț: 749.95 lei - 15%
Preț: 441.05 lei - 18%
Preț: 685.61 lei - 15%
Preț: 469.81 lei - 18%
Preț: 777.01 lei - 18%
Preț: 909.48 lei - 18%
Preț: 901.75 lei - 18%
Preț: 1311.65 lei - 18%
Preț: 700.63 lei - 20%
Preț: 400.11 lei - 15%
Preț: 502.04 lei - 9%
Preț: 742.48 lei - 18%
Preț: 1406.45 lei - 15%
Preț: 601.65 lei - 18%
Preț: 759.00 lei - 18%
Preț: 911.62 lei - 18%
Preț: 700.79 lei
Preț: 572.38 lei
Preț vechi: 762.99 lei
-25% Precomandă
Puncte Express: 859
Preț estimativ în valută:
101.16€ • 119.02$ • 88.31£
101.16€ • 119.02$ • 88.31£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Specificații
ISBN-13: 9781041152774
ISBN-10: 1041152779
Pagini: 296
Ilustrații: 78
Dimensiuni: 156 x 234 mm
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science
ISBN-10: 1041152779
Pagini: 296
Ilustrații: 78
Dimensiuni: 156 x 234 mm
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science
Public țintă
AcademicCuprins
Preface 1 Linear regression 2 Generalized linear regression 3 Smoothing methods: Splines and kernels 4 Generalized linear mixed regression Bibliography Index
Notă biografică
Zhiqiang Tan is a Distinguished Professor in the Department of Statistics, Rutgers University. His research and teaching interests include Monte Carlo methods, causal inference, statistical learning, and related areas. He is a Fellow of the American Statistical Association, a Fellow of the Institute of Mathematical Statistics, and an Elected Member of the International Statistical Institute.
Descriere
This book provides a concise account of four components of regression and smoothing methods: linear regression, generalized linear models, spline and kernel methods, and generalized linear mixed models. By bringing together parametric regression and nonparametric smoothing methods, the book emphasizes connections across methods.