Cantitate/Preț
Produs

Study on Signal Detection and Recovery Methods with Joint Sparsity: Springer Theses

Autor Xueqian Wang
en Limba Engleză Hardback – 2 oct 2023
The task of signal detection is deciding whether signals of interest exist by using their observed data. Furthermore, signals are reconstructed or their key parameters are estimated from the observations in the task of signal recovery. Sparsity is a natural characteristic of most of signals in practice. The fact that multiple sparse signals share the common locations of dominant coefficients is called by joint sparsity. In the context of signal processing, joint sparsity model results in higher performance of signal detection and recovery. This book focuses on the task of detecting and reconstructing signals with joint sparsity. The main contents include key methods for detection of joint sparse signals and their corresponding theoretical performance analysis, and methods for joint sparse signal recovery and their application in the context of radar imaging.
Citește tot Restrânge

Din seria Springer Theses

Preț: 84417 lei

Preț vechi: 102947 lei
-18%

Puncte Express: 1266

Preț estimativ în valută:
16161 17526$ 13614£

Carte disponibilă

Livrare economică 07-21 octombrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789819941162
ISBN-10: 9819941164
Ilustrații: XVI, 121 p. 52 illus., 36 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:1st ed. 2024
Editura: Springer Nature Singapore
Colecția Springer
Seria Springer Theses

Locul publicării:Singapore, Singapore

Cuprins

Introduction.- Joint Sparse Signal Detection Based On Locally Most Powerful Test Under Gaussian Model.- Joint Sparse Signal Detection Based On Locally Most Powerful Test Under Generalized Gaussian Model.- Joint Sparse Signal Recovery Based On Look-Ahead Selection of Basis-Signals.- Joint Sparse Signal Recovery Based On Two-Level Sparsity.- Summary and Outlook.
 

Notă biografică

Dr. Xueqian Wang obtained his Ph.D. degree at Tsinghua University, Beijing, China in 2020. His research is focused on target detection, information fusion, radar imaging, compressed sensing and distributed signal processing. He has published 18 articles in these fields, including 8 IEEE Transactions. Dr. Xueqian Wang has been awarded Postdoctoral Innovative Talent Support Program, Innovative Achievement of Postdoctoral Innovative Talent Support Program, Beijing Outstanding Graduate, and Excellent Doctoral Thesis of Tsinghua University.

Textul de pe ultima copertă

The task of signal detection is deciding whether signals of interest exist by using their observed data. Furthermore, signals are reconstructed or their key parameters are estimated from the observations in the task of signal recovery. Sparsity is a natural characteristic of most of signals in practice. The fact that multiple sparse signals share the common locations of dominant coefficients is called by joint sparsity. In the context of signal processing, joint sparsity model results in higher performance of signal detection and recovery. This book focuses on the task of detecting and reconstructing signals with joint sparsity. The main contents include key methods for detection of joint sparse signals and their corresponding theoretical performance analysis, and methods for joint sparse signal recovery and their application in the context of radar imaging.

Caracteristici

A new detection method is proposed based on the strategy of locally most powerful test with its theoretical analysis
It basis-signals with the look-ahead strategy
On the two-level block sparsity