Multi-Hamiltonian Theory of Dynamical Systems: Theoretical and Mathematical Physics
Autor Maciej Blaszaken Limba Engleză Paperback – 13 noi 2013
Din seria Theoretical and Mathematical Physics
- 18%
Preț: 755.65 lei - 18%
Preț: 752.40 lei - 15%
Preț: 530.30 lei - 15%
Preț: 580.94 lei - 15%
Preț: 623.84 lei - 15%
Preț: 672.74 lei - 18%
Preț: 1072.55 lei - 15%
Preț: 623.22 lei -
Preț: 388.04 lei - 18%
Preț: 956.69 lei - 15%
Preț: 638.15 lei - 20%
Preț: 623.89 lei - 15%
Preț: 509.55 lei - 18%
Preț: 935.59 lei -
Preț: 474.49 lei - 15%
Preț: 568.05 lei - 18%
Preț: 761.05 lei -
Preț: 381.19 lei -
Preț: 375.07 lei -
Preț: 380.04 lei - 15%
Preț: 679.32 lei - 15%
Preț: 620.38 lei - 15%
Preț: 579.03 lei - 15%
Preț: 618.83 lei - 15%
Preț: 489.05 lei - 18%
Preț: 753.04 lei - 15%
Preț: 614.60 lei - 18%
Preț: 963.80 lei -
Preț: 390.61 lei - 15%
Preț: 624.46 lei -
Preț: 393.57 lei - 15%
Preț: 628.86 lei - 18%
Preț: 850.37 lei - 15%
Preț: 627.93 lei - 18%
Preț: 1645.28 lei -
Preț: 383.23 lei - 18%
Preț: 1078.91 lei -
Preț: 385.99 lei - 18%
Preț: 923.48 lei - 18%
Preț: 1081.04 lei -
Preț: 380.24 lei -
Preț: 380.99 lei - 15%
Preț: 621.80 lei
Preț: 378.91 lei
Nou
Puncte Express: 568
Preț estimativ în valută:
67.04€ • 78.10$ • 58.54£
67.04€ • 78.10$ • 58.54£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642637803
ISBN-10: 3642637809
Pagini: 364
Ilustrații: X, 350 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer
Seria Theoretical and Mathematical Physics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642637809
Pagini: 364
Ilustrații: X, 350 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer
Seria Theoretical and Mathematical Physics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Preliminary Considerations.- 2. Elements of Differential Calculus for Tensor Fields.- 2.1 Tensors.- 2.2 Tensor Fields.- 2.3 Transformation Properties of Tensor Fields.- 2.4 Directional Derivative of Tensor Fields.- 2.5 Differential ?-Forms.- 2.6 Flows and Lie Transport.- 2.7 Lie Derivatives.- 3. The Theory of Hamiltonian and Bi-Hamiltonian Systems.- 3.1 Lie Algebras.- 3.2 Hamiltonian and Bi-Hamiltonian Vector Fields.- 3.3 Symmetries and Conserved Quantities of Dynamical Systems.- 3.4 Tensor Invariants of Dynamical Systems.- 3.5 Algebraic Properties of Tensor Invariants.- 3.6 The Miura Transformation.- 4. Lax Representations of Multi-Hamiltonian Systems.- 4.1 Lax Operators and Their Spectral Deformations.- 4.2 Lax Representations of Isospectral and Nonisospectral Hierarchies.- 4.3 The Lax Operator Algebra.- 5. Soliton Particles.- 5.1 General Aspects.- 5.2 Algebraic Structure of Linear Systems.- 5.3 Algebraic Structure of Multi-Soliton Representation.- 5.4 Multi-Soliton Perturbation Theory.- 6. Multi-Hamiltonian Finite Dimensional Systems.- 6.1 Stationary Flows of Infinite Systems. Ostrogradsky Parametrizations.- 6.2 Stationary Flows of Infinite Systems. Newton Parametrization.- 6.3 Constrained Flows of Lax Equations.- 6.4 Restricted Flows of Infinite Systems.- 6.5 Separability of Bi-Hamiltonian Chains with Degenerate Poisson Structures.- 6.6 Nonstandard Multi-Hamiltonian Structures and Their Finite Dimensional Reductions.- 6.7 Bi-Hamiltonian Chains on Poisson-Nijenhuis Manifolds.- 7. Multi-Hamiltonian Lax Dynamics in (1+1)-Dimensions.- 7.1 Hamiltonian Dynamics on Lie Algebras.- 7.2 Basic Facts About R-Structures.- 7.3 Multi-Hamiltonian Dynamics of Pseudo-Differential Lax Operators.- 7.4 Multi-Hamiltonian Dynamics of Shift Lax Operators.- 8. Towards aMulti-Hamiltonian Theory of (2+1)-Dimensional Field Systems.- 8.1 The Sato Theory.- 8.2 Multi-Hamiltonian Lax Dynamics for Noncommutative Variables.- References.
Textul de pe ultima copertă
This is a modern approach to Hamiltonian systems where multi-Hamiltonian systems are presented in book form for the first time. These systems allow a unified treatment of finite, lattice and field systems. Having more than one Hamiltonian formulation in a single coordinate system for a nonlinear system is a property closely related to integrability. Thus, the book presents an algebraic theory of integrable systems. It is written for scientists and graduate students.