Hyperbolic Systems of Balance Laws
Autor Alberto Bressan, Denis Serre, Mark Williams, Kevin Zumbrun Editat de Pierangelo Marcatien Limba Engleză Paperback – 6 iun 2007
Preț: 379.35 lei
Nou
Puncte Express: 569
Preț estimativ în valută:
67.12€ • 78.19$ • 58.61£
67.12€ • 78.19$ • 58.61£
Carte tipărită la comandă
Livrare economică 20 ianuarie-03 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540721864
ISBN-10: 354072186X
Pagini: 372
Ilustrații: XII, 356 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.56 kg
Ediția:2007
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354072186X
Pagini: 372
Ilustrații: XII, 356 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.56 kg
Ediția:2007
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
BV Solutions to Hyperbolic Systems by Vanishing Viscosity.- Discrete Shock Profiles: Existence and Stability.- Stability of Multidimensional Viscous Shocks.- Planar Stability Criteria for Viscous Shock Waves of Systems with Real Viscosity.
Textul de pe ultima copertă
The present Cime volume includes four lectures by Bressan, Serre, Zumbrun and Williams and an appendix with a Tutorial on Center Manifold Theorem by Bressan. Bressan’s notes start with an extensive review of the theory of hyperbolic conservation laws. Then he introduces the vanishing viscosity approach and explains clearly the building blocks of the theory in particular the crucial role of the decomposition by travelling waves. Serre focuses on existence and stability for discrete shock profiles, he reviews the existence both in the rational and in the irrational cases and gives a concise introduction to the use of spectral methods for stability analysis. Finally the lectures by Williams and Zumbrun deal with the stability of multidimensional fronts. Williams’ lecture describes the stability of multidimensional viscous shocks: the small viscosity limit, linearization and conjugation, Evans functions, Lopatinski determinants etc. Zumbrun discusses planar stability for viscous shocks with a realistic physical viscosity, necessary and sufficient conditions for nonlinear stability, in analogy to the Lopatinski condition obtained by Majda for the inviscid case.
Caracteristici
Includes supplementary material: sn.pub/extras