Heterogeneous Data Management, Polystores, and Analytics for Healthcare: VLDB Workshops, Poly 2020 and DMAH 2020, Virtual Event, August 31 and September 4, 2020, Revised Selected Papers: Lecture Notes in Computer Science, cartea 12633
Editat de Vijay Gadepally, Timothy Mattson, Michael Stonebraker, Tim Kraska, Fusheng Wang, Gang Luo, Jun Kong, Alevtina Dubovitskayaen Limba Engleză Paperback – 4 mar 2021
Din seria Lecture Notes in Computer Science
- 20%
Preț: 390.18 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 461.77 lei - 20%
Preț: 527.36 lei - 20%
Preț: 497.04 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.14 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.06 lei - 20%
Preț: 390.69 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 390.35 lei - 20%
Preț: 391.20 lei - 20%
Preț: 392.64 lei - 20%
Preț: 389.90 lei - 20%
Preț: 639.72 lei - 20%
Preț: 461.65 lei - 20%
Preț: 462.05 lei - 15%
Preț: 388.50 lei - 5%
Preț: 516.27 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 535.77 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 400.17 lei - 20%
Preț: 403.00 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 317.55 lei
Preț vechi: 396.94 lei
-20% Nou
Puncte Express: 476
Preț estimativ în valută:
56.18€ • 65.45$ • 49.06£
56.18€ • 65.45$ • 49.06£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030710545
ISBN-10: 3030710548
Pagini: 233
Ilustrații: XIII, 233 p. 84 illus., 71 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.35 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Security and Cryptology
Locul publicării:Cham, Switzerland
ISBN-10: 3030710548
Pagini: 233
Ilustrații: XIII, 233 p. 84 illus., 71 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.35 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Security and Cryptology
Locul publicării:Cham, Switzerland
Cuprins
Poly 2020: Privacy, Security and/or Policy Issues for Heterogenous Data.- A Polystore Based Database Operating System (DBOS).- Polypheny-DB: Towards Bridging the Gap Between Polystores and HTAP Systems.- Persona Model Transfer for User Activity Prediction across Heterogeneous Domains.- PolyMigrate: Dynamic Schema Evolution and Data Migration in a Distributed Polystore.- An Architecture for the Development of Distributed Analytics based on Polystore Events.- Towards Data Discovery by Example.- The Transformers for Polystores - the next frontier for Polystore research.- DMAH 2020: COVID-19 Data Analytics and Visualization.- Open-world COVID-19 Data Visualization.- DMAH 2020: Deep Learning based Biomedical Data Analytics.- Privacy-Preserving Knowledge Transfer with Bootstrap Aggregation of Teacher Ensembles.- An Intelligent and Efficient Rehabilitation Status Evaluation Method: A Case Study on Stroke Patients.- Multiple Interpretations Improve Deep Learning Transparency for Prostate Lesion Detection.- DMAH 2020: NLP based Learning from Unstructured Data.- Tracing State-Level Obesity Prevalence from Sentence Embeddings of Tweets: A Feasibility Study.- Enhancing Medical Word Sense Inventories Using Word Sense Induction: A Preliminary Study.- DMAH 2020: Biomedical Data Modelling and Prediction.- Teaching analytics medical-data common sense.- CDRGen: A Clinical Data Registry Generator.- Prediction of lncRNA-disease associations from tripartite graphs.- DMAH 2020: Invited Paper.- Parameter Sensitivity Analysis for the Progressive Sampling-Based Bayesian Optimization Method for Automated Machine Learning Model Selection.