Cantitate/Preț
Produs

Heat Transport and Energetics of the Earth and Rocky Planets

De (autor)
Notă GoodReads:
en Limba Engleză Carte Paperback – November 2019
Heat Transport and Energetics of the Earth and Rocky Planets provides a better understanding of the interior of the Earth by addressing the processes related to the motion of heat in large bodies. By addressing issues such as the effect of self-gravitation on the thermal state of the Earth, the effect of length-scales on heat transport, important observations of Earth, and a comparison to the behavior of other rocky bodies, readers will find clearly delineated discussions on the thermal state and evolution of the Earth. Using a combination of fundamentals, new developments and scientific and mathematical principles, the book summarizes the state-of-the-art.
This timely reference is an important resource for geophysicists, planetary scientists, geologists, geochemists, and seismologists to gain a better understanding of the interior, formation and evolution of planetary bodies.


  • Provides an interdisciplinary approach to the understanding of the thermal evolution of large planetary bodies, including contributed chapters from leading experts
  • Includes relevant observations of Earth and large-scale heat transfer, a critical review of existing paradigms of the current thermal state of the Earth, and a discussion of heat flow on the other rocky planets
  • Covers macroscopic phenomena as they pertain to deciphering the thermal structure of planetary bodies
Citește tot Restrânge

Preț: 45456 lei

Preț vechi: 51074 lei
-11% Nou

Puncte Express: 682

Preț estimativ în valută:
9091 10021$ 7808£

Carte disponibilă

Livrare economică 25-29 noiembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780128184301
ISBN-10: 0128184302
Pagini: 300
Ilustrații: Approx. 100 illustrations
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE

Public țintă

Researchers and graduate students in geophysics, geology, geochemistry, seismology, and planetary science

Cuprins

1. Observational Constraints on Heat Transport inside Earth 2. Models for Conductive (Diffusive) Cooling on Planetary Scales 3. Heat Transport Processes on Planetary Scales 4. Physical Constraints on the Initial Conditions and Early Evolution of the Solar System 5. Final-stage, Large-scale Gravitational Processes affecting Planetary Heat Transfer 6. Thermal models of the Continental Lithosphere 7. Thermal models of the Oceanic lithosphere 8. Thermal Structure of the Lower Mantle and Core 9. Thermo-chemical Evolution of the Earth 10. Thermal History of the Terrestrial 11. Chondrules 12. Conclusions and Future Work