General Theory of Irregular Curves: Mathematics and its Applications, cartea 29
Autor V.V. Alexandrov, Yu. G. Reshetnyaken Limba Engleză Paperback – 26 sep 2011
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 373.60 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 26 sep 2011 | 373.60 lei 6-8 săpt. | |
| Hardback (1) | 381.92 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 31 oct 1989 | 381.92 lei 6-8 săpt. |
Din seria Mathematics and its Applications
-
Preț: 398.01 lei - 20%
Preț: 613.70 lei - 15%
Preț: 680.49 lei - 20%
Preț: 373.35 lei -
Preț: 419.52 lei -
Preț: 461.04 lei -
Preț: 438.14 lei - 15%
Preț: 618.78 lei - 18%
Preț: 702.82 lei -
Preț: 471.35 lei - 15%
Preț: 434.03 lei - 15%
Preț: 411.63 lei - 18%
Preț: 705.56 lei -
Preț: 430.56 lei - 20%
Preț: 737.41 lei -
Preț: 435.00 lei - 15%
Preț: 615.63 lei - 18%
Preț: 820.79 lei - 18%
Preț: 1186.02 lei -
Preț: 462.26 lei -
Preț: 437.94 lei - 15%
Preț: 678.08 lei - 18%
Preț: 1014.51 lei - 18%
Preț: 705.75 lei - 20%
Preț: 486.11 lei - 15%
Preț: 420.02 lei - 15%
Preț: 618.03 lei - 15%
Preț: 671.45 lei -
Preț: 378.05 lei - 15%
Preț: 626.52 lei - 15%
Preț: 622.59 lei -
Preț: 374.71 lei -
Preț: 379.15 lei
Preț: 373.60 lei
Nou
Puncte Express: 560
Preț estimativ în valută:
66.13€ • 77.08$ • 57.83£
66.13€ • 77.08$ • 57.83£
Carte tipărită la comandă
Livrare economică 20 ianuarie-03 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401076715
ISBN-10: 9401076715
Pagini: 300
Ilustrații: X, 288 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401076715
Pagini: 300
Ilustrații: X, 288 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I: General Notion of a Curve.- 1.1. Definition of a Curve.- 1.2. Normal Parametrization of a Curve.- 1.3. Chains on a Curve and the Notion of an Inscribed Polygonal Line.- 1.4. Distance Between Curves and Curve Convergence.- 1.5. On a Non-Parametric Definition of the Notion of a Curve.- II: Length of a Curve.- 2.1. Definition of a Curve Length and its Basic Properties.- 2.2. Rectifiable Curves in Euclidean Spaces.- 2.3. Rectifiable Curves in Lipshitz Manifolds.- III: Tangent and the Class of One-Sidedly Smooth Curves.- 3.1. Definition and Basic Properties of One-Sidedly Smooth Curves.- 3.2. Projection Criterion of the Existence of a Tangent in the Strong Sense.- 3.3. Characterizing One-Sidedly Smooth Curves with Contingencies.- 3.4. One-Sidedly Smooth Functions.- 3.5. Notion of c-Correspondence. Indicatrix of Tangents of a Curve.- 3.6. One-Sidedly Smooth Curves in Differentiable Manifolds.- IV: Some Facts of Integral Geometry.- 4.1. Manifold Gnk of k-Dimensional Directions in Vn.- 4.2. Imbedding of Gnk into a Euclidean Space.- 4.3. Existence of Invariant Measure of Gnk.- 4.4. Invariant Measure in Gnk and Integral. Uniqueness of an Invariant Measure.- 4.5. Some Relations for Integrals Relative to the Invariant Measure in Gnk.- 4.6. Some Specific Subsets of Gnk.- 4.7. Length of a Spherical Curve as an Integral of the Function Equal to the Number of Intersection Points.- 4.8. Length of a Curve as an Integral of Lengths of its Projections.- 4.9. Generalization of Theorems on the Mean Number of the Points of Intersection and Other Problems.- V: Turn or Integral Curvature of a Curve.- 5.1. Definition of a Turn. Basic Properties of Curves of a Finite Turn.- 5.2. Definition of a Turn of a Curve by Contingencies.- 5.3. Turn of a Regular Curve.- 5.4. Analytical Criterion of Finiteness of a Curve Turn.- 5.5. Basic Integra-Geometrical Theorem on a Curve Turn.- 5.6. Some Estimates and Theorems on a Limiting Transition.- 5.7. Turn of a Curve as a Limit of the Sum of Angles Between the Secants.- 5.8. Exact Estimates of the Length of a Curve.- 5.9. Convergence with a Turn.- 5.10 Turn of a Plane Curve.- VI: Theory of a Turn on an n-Dimensional Sphere.- 6.1. Auxiliary Results.- 6.2. Integro-Geometrical Theorem on Angles and its Corrolaries.- 6.3. Definition and Basic Properties of Spherical Curves of a Finite Geodesic Turn.- 6.4. Definition of a Geodesic Turn by Means of Tangents.- 6.5. Curves on a Two-Dimensional Sphere.- VII: Osculating Planes and Class of Curves with an Osculating Plane in the Strong Sense.- 7.1. Notion of an Osculating Plane.- 7.2. Osculating Plane of a Plane Curve.- 7.3. Properties of Curves with an Osculating Plane in the Strong Sense.- VIII: Torsion of a Curve in a Three-Dimensional Euclidean Space.- 8.1. Torsion of a Plane Curve.- 8.2. Curves of a Finite Complete Torsion.- 8.3. Complete Two-Dimensional Indicatrix of a Curve of a Finite Complete Torsion.- 8.4. Continuity and Additivity of Absolute Torsion.- 8.5. Definition of an Absolute Torsion Through Triple Chains and Paratingences.- 8.6. Right-Hand and Left-Hand Indices of a Point. Complete Torsion of a Curve.- IX: Frenet Formulas and Theorems on Natural Parametrization.- 9.1. Frenet Formulas.- 9.2. Theorems on Natural Parametrization.- X: Some Additional Remarks.- References.