Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970: Symbolic Computation
Editat de J. Siekmann, G. Wrightsonen Limba Engleză Paperback – 9 feb 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 635.90 lei 43-57 zile | |
| Springer Berlin, Heidelberg – 10 ian 2012 | 635.90 lei 43-57 zile | |
| Springer Berlin, Heidelberg – 9 feb 2012 | 641.95 lei 43-57 zile |
Din seria Symbolic Computation
- 20%
Preț: 336.86 lei - 20%
Preț: 626.71 lei - 20%
Preț: 622.59 lei - 20%
Preț: 624.02 lei - 20%
Preț: 623.39 lei - 20%
Preț: 614.65 lei - 20%
Preț: 627.83 lei - 20%
Preț: 617.38 lei - 20%
Preț: 625.93 lei - 20%
Preț: 634.45 lei - 20%
Preț: 620.38 lei - 20%
Preț: 623.39 lei - 20%
Preț: 625.13 lei - 20%
Preț: 621.49 lei -
Preț: 379.31 lei - 20%
Preț: 314.04 lei - 20%
Preț: 329.25 lei - 20%
Preț: 327.04 lei - 20%
Preț: 616.26 lei - 20%
Preț: 632.58 lei - 20%
Preț: 623.22 lei - 20%
Preț: 635.90 lei - 15%
Preț: 614.24 lei - 20%
Preț: 632.26 lei - 20%
Preț: 627.51 lei - 20%
Preț: 317.85 lei - 20%
Preț: 682.51 lei - 20%
Preț: 802.33 lei - 20%
Preț: 630.68 lei - 20%
Preț: 312.30 lei - 20%
Preț: 728.16 lei - 20%
Preț: 342.11 lei - 20%
Preț: 315.80 lei - 20%
Preț: 317.68 lei - 20%
Preț: 329.91 lei - 20%
Preț: 534.13 lei
Preț: 641.95 lei
Preț vechi: 802.43 lei
-20% Nou
Puncte Express: 963
Preț estimativ în valută:
113.58€ • 132.32$ • 99.18£
113.58€ • 132.32$ • 99.18£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642819575
ISBN-10: 3642819575
Pagini: 656
Ilustrații: XII, 637 p.
Dimensiuni: 170 x 244 x 34 mm
Greutate: 1.03 kg
Ediția:Softcover reprint of the original 1st ed. 1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Symbolic Computation, Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642819575
Pagini: 656
Ilustrații: XII, 637 p.
Dimensiuni: 170 x 244 x 34 mm
Greutate: 1.03 kg
Ediția:Softcover reprint of the original 1st ed. 1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Symbolic Computation, Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Automated Theorem Proving 1965–1970.- 1967.- A Cancellation Algorithm for Elementary Logic.- An Inverse Method for Establishing Deducibility of Nonprenex Formulas of the Predicate Calculus.- Automatic Theorem Proving With Renamable and Semantic Resolution.- The Concept of Demodulation in Theorem Proving.- 1968.- Resolution with Merging.- On Simplifying the Matrix of a WFF.- Mechanical Theorem-Proving by Model Elimination.- The Generalized Resolution Principle.- New Directions in Mechanical Theorem Proving.- Automath, a Language for Mathematics.- 1969.- Semi-Automated Mathematics.- Semantic Trees in Automatic Theorem-Proving.- A Simplified Format for the Model Elimination Theorem-Proving Procedure.- Theorem-Provers Combining Model Elimination and Resolution.- Relationship between Tactics of the Inverse Method and the Resolution Method.- E-Resolution: Extension of Resolution to Include the Equality Relation.- 1969.- Advances and Problems in Mechanical Proof Procedures.- Paramodulation and Theorem-Proving in First-Order Theories with Equality.- 1970.- Completeness Results for E-Resolution.- A Linear Format for Resolution With Merging and a New Technique for Establishing Completeness.- The Unit Proof and the Input Proof in Theorem Proving.- Simple Word Problems in Universal Algebras.- The Case for Using Equality Axioms in Automatic Demonstration.- A Linear Format for Resolution.- An Interactive Theorem-Proving Program.- Refinement Theorems in Resolution Theory.- On the Complexity of Derivation in Propositional Calculus.- After 1970.- Resolution in Type Theory.- Splitting and Reduction Heuristics in Automatic Theorem Proving.- A Computer Algorithm for the Determination of Deducibility on the Basis of the Inverse Method.- Linear Resolution with Selection Function.- MaximalModels and Refutation Completeness: Semidecision Procedures in Automatic Theorem Proving.- Bibliography on Computational Logic.